PHYSICAL REVIEW E 70, 056617(2004)

Two-component Bose-Einstein condensates in periodic potential
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Coupled nonlinear Schrédingé€ENLS) equations with an external elliptic function potential model with
high accuracy a quasi-one-dimensional interacting two-component Bose-Einstein con@@BE&ateapped in
a standing wave generated by a few laser beams. The construction of stationary solutions of the two-component
CNLS equation with a periodic potential is detailed and their stability properties are studied by direct numeri-
cal simulations. Some of these solutions allow reduction to the Manakov system. From a physical point of view
the trivial phase solutions can be interpreted as exact Bloch states at the edge of the Brillouin zone. Some of
them are stable while others are found to be unstable against weak modulations of long wavelength. By
numerical simulations it is shown that the modulationally unstable solutions lead to the formation of localized
ground states of the coupled BEC system.
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[. INTRODUCTION specific cases the two-component CNLS equations can be
) ) _ ) reduced to the Manakov systdi2] with an external poten-
Recent experiments on dilute-gas Bose-Einstein condeng.

sates(BEC's) have generated great interest from both theo-  An important role in analyzing these effects was played
retical and experimental points of viefll]. At ultralow tem- by the elliptic and periodic solutions of the above-mentioned
peratures the mean-field description for the macroscopiequations. Such solutions for the one-component NLS equa-
BEC wave function is constructed using the Hartree-Fockion are well known; se¢13] and the numerous references
approximation and results in the Gross-PitaevgRiP) equa-  therein. Elliptic solutions for the CNLS equation and Mana-
tion [1]. The latter reduces to the one-dimensiofidd) non-  kov system were derived if14-14.
linear Schrodinge(NLS) equation with an external poten- In the presence of an external elliptic potential explicit
tial, in particular, when the transverse dimensions of thestationary solutions for the NLS equation were derived in
condensate are much less than its healing length and its loh>—7]. These results were generalized to tixeomponent
gitudinal dimension is of the order of or much longer thanCNLS equation if11]. .
the healing lengti(see, e.g.[2,3)). This is known as the We study exact stationary two-component solutions of the

quasi-one-dimensionalquasi-10 regime of the GP equa- CNLS equation with elliptic external potential. Our main aim

tion. In this regime BEC's remain phase coherent, and th@nd interest will be on the physical implications of these

governing equations are one dimensional. Several families ()t?oluthnst,hln part|cuIt§1r onftr;e role played tby ul_rt\stablg sct)Lu-
stationary solutions for the cubic NLS equation with an el-0"s [N the generation of two-component sSolitons via the
mechanism of modulational instability. Special attention will

liptic functlon_potenpal have been recen;ly presented n Refs e devoted to a class of solutions with degenerate interaction
[4,5] and their stability has been examined by analytic an

. atrices, as well as to the problem of the reduction of the
numerical method§5-7]. P

. L original three-dimensional coupled GP equations to the
Exp.erlmental real!zatlon of two-.com.ponent BEQ&Q] coupled one-dimensional NLS equations. In particular, a cri-
has stimulated considerable attention in geng@land in o ion for the 1D approximation to be valid is derived. Pos-
particular in the quasi-1D reginf@0,1] when the GP equa- qjpjjities of a physical realization of the considered situations
tions for two interacting BEC’s reduce to coupled nonlinear

. . . . are also briefly discussed.
Schrédinge(CNLS) equations with an external potential. In The paper is organized as follows. In Sec. Il we show how

to derive 1D equations for coupled BEC's starting from the

original three-dimensional problem using a multiple scale

*Electronic address: nakostov@ie.bas.bg expansion in the small amplitude limit. In Sec. Il we present
"Electronic address: vze@ma.hw.ac.uk an exact solution of the CNLS system with nontrivial phases.
*Permanent address: Institute for Nuclear Research and Nucle&ection IV concerns stationary solutions with trivial phases
Energy, Bulgarian Academy of Sciences, Blvd. Tzarigradsko chausfor both proportional and nonproportional components. In

see 72, 1784 Sofia, Bulgaria. Sec. V we discuss the physical properties of the trivial phase
Electronic address: gerjikov@inrne.bas.bg solutions and show, by means of direct numerical simula-
SElectronic address: konotop@cii.fc.ul.pt tions, how these solutions may lead to the formation of lo-
'Electronic address: salerno@sa.infn.it calized matter waves through the mechanism of modula-
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tional instability. In Sec. VI we compare the present resultss the linear oscillator length armjzf|\1'j|2dr is the number
with previous work and briefly discuss the possibility of ex- of atoms of thejth component to the kinetic energy
perimental implementations. Finally, in Sec. VIl we summa-#2/2mé&f. In other words, the small parameter of the problem
rize the main conclusions of the paper. can be identified formally ag=8wN,a;;V\/a;<1, where
N=N;+N, is the total number of atoms. Here we have taken
into account thag; anda, as well as the scattering lengths
Il. BASIC EQUATIONS between atomsy; are all of the same order. In this situation
a self-consistent reduction of the original 3D systg) to
the effective 1D system of coupled equations can be pro-
vided by means of the multiple scale technique. Since the
details of such a reduction have already been published else-

At very low temperatures, when the mean-field approxi-
mation is applicable, the evolution of two interacting BEC’s
can be described by two coupled GP equatigssl, 2) (see,

e.-[9.10) where [3,19) for a single component BEC, here we only
IV _ h? Amh? outline the main steps.
2 2 e . . .
in ot - va +Vj(r) + m 2 ail|qfl| Wi, Let us first introduce dimensionless variables

1=1,2

(2.1 RN ¢ , 1 2a;
I‘=(X,I‘J_)=a—1, tZEQj_t, (ﬂj N‘I’j,

where the atomic masses of both components are assumed to
be equal,vj(r) is an external trap potential, arsg} are the
scattering lengths of the respective atomic interact{otiser
notations are standaydn the case when the potential con-
sists of a superposition of a magnetic trap providing a cigar-
shaped condensatelongated, say, along theaxis) and an .
optical lattice inducing a trap potential which is assumed to iy =[— A"+ Uy(r' ,X") + Gugl 4] + Qg o] 211k, (2.5)
be periodic along the axis, one hagj=1, 2

and rewrite Eqs(2.1) in the form

il;bl =[= A"+ Uy(r' X)) + gualn? + 9oal T, (2.9)

where k' =kay,

_Mi2.22. 2
Vi =070 +y +79) + U(kx), (2.2 Uy(r’ X)) =AX 2+ 12+ V(k'X'), (2.6)
U(kX) =U(k(x+L)). (2.3 Uz(rl,x’):Qz()\zx +rJ_)+V(Kx)
Here\ describes the aspect ratio of the condensate, which is
assumed to be the same for both components. For the cigar- _ 2,2 o2 ',
shaped condensatas< 1 with typical values 10°—10%. Q=afa, Vix'x)= ﬁQlu(K X, 2.7

Although in the last expression we have imposed equality
of the optical potential for both components, in a genericand g;; =47Ng;/a;. The next consideration depends on the
case one has to distinguish the linear oscillator frequencie®agnitude ofx [it is assumed tha)’(x)/U(x)=0(1)]. One
Q, and Q, when considering the two components corre-can distinguish three main cases.
sponding to the different magnetic moments. For example, in (i) «'~1. In this case the periodicity is of order of the
the experimental settings of17] with 8Rb atoms )  transverse size of the condensate and much less than the
=0,/Q,=12. This fact has a natural implication for the re- healing length of each of the Componerﬁs(BwnJaj) 12
sulting form of the effective system of coupled 1D NLS where n; is the density of thejth component: a2/§ ~€.
equations. Indeed, different oscillator frequencies mean thakhen, for excitations of the BEC having characterlstlc scales
two components are located in two different parabolic potenof order of the healing length, the periodicity modifies the
tials, and thus their effective densities are different when thepectrum of the underlying system, introducing the effective
number of atoms is equal. As a consequence, even at agroup velocity dispersion. The resulting equations are just
proximately equals-wave scattering lengths, and thus for CNLS equations without a periodic potential. This is the case
a;, =~ ay,, the two components will experience different non- similar to one considered ifi3] for the case of a single-
linearities, proportional to the atomic densities. component BEC.

Another important issue to be mentioned here is that a (i) ' <e (say«~ €?). In this case the periodic potential
cigar-shaped BEC can be viewed as a waveguide for mattean be considered as smoothly varying on scales of order of
waves. As such it is characterized by its mode structure. As ithe healing lengths, and somehow can be viewed as a limit of
well known (compare with the nonlinear optical waveguidesthe case considered below.

[18]) the intrinsic nonlinearity of a BEC results in mode  (iii) «'=aewherea~ 1. This is the case when the poten-
interaction(and thus energy distribution among moyd§ tial periodicity is of the order of the effective length of the
however, the nonlinearity is weak enough, the main state ofonlinearity(i.e., of the healing lengih Below we concen-
the condensate can be considered as a weakly modulatéwhte on this last case.

ground state, as it is clear that for a two-component BEC the To this end we consider two eigenvalue problems
corresponding small parameter is the ratio of the energy of o1

two-body interactions #%2N,\"%a;;/ma’ (herea;=\A/mq; (=A" +\X2+1'?) @ = Esgy,
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’ 12 —
(= A"+ Q2(\X2+1'9) 0= Bz (2.9
whose normalized ground states are well known:
)\1/4 2. 12
— —(\X"“+r"9)/2
= e 174
P17 3l
3/4y 1/4
Q7N e (@O 247 (2.9

$2=
o4 ,

andE;=Q"1(\ +2).
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IIl. STATIONARY SOLUTIONS WITH NONTRIVIAL
PHASES

An appropriate class of periodic potentials to model the
quasi-1D confinement produced by a standing light wave is
given by[5-7,1]

V(ax) = Vgsre(ax,k), (3.1

where siiax,k) denotes the Jacobian elliptic sine function
with elliptic modulus O<k=<1. In experiments such poten-
tials can be well approximated by only a few laser beams.

The next steps are conventional for the multiple scale exindeed, one can use the well known form{2g]

pansion(see, e.g.[3]); namely, we introduce scaled vari-
.) which
are considered as independent, and look for the solution of

ablesx,=€"x’,r,=€"r’, andt,=€"t’ (n=0, 1, 2,..

Egs.(2.4) and(2.5) in the form

1
;= V|, I)\llz(f'ﬂl) +EYP+-) (2.10

(2.1

with
'/fjgl) = Q(xy,t) ¢ (Xo T o)€ 5, j=1,2.

HereQj(x,,t,) describes slow modulation of the background

state(2.9) due to the nonlinearity.

Substituting Eq(2.10 in Egs.(2.4) and(2.5), equating all
terms at each of the orders, and excluding secular terms, in

the ordere® we obtain

ilz_(tgl (le +V(ax1)Qq + by| Q1] *Qy + bo|Q,[*Qy,
2 X1
(2.12
i(;—?; (j(xglz +V(ax) Q2 + bo| Q1°Q, + by Q7 °Q,,
(2.13
where

sgng.y)
by = Sgr(gll)f ‘¢1| dr = 2302 ;,/2,

2
_ ngJ 2 2 _ 1 Q 3 o
bo==== | [ef*leol°dr = —55 =,
0 914 nve 72\ +1 |ay,|

022 4 03?2 Kl
dr =
bz = |911|f|¢2| 23/2 3/2|a l’

and it is taken into account thag,=a,;. The system2.12
and(2.13 is the subject of our main interest.

It is to be emphasized here that, although the trap poten-
tial is included in the evolution equatiofisee Eqs(2.1) and
(2.2)], it does not appear in an explicit form in the system

- qmi2 (2n + 1) max
>

Kk
sk = kK(k2>n01 7" 2K ()

whereq=exp{-mK(1-k?)/K(k?]} andK(k?) is a complete
elliptic integral of the first kind. Then, even for relatively
large elliptic modulus, sa%=0.9, one obtaingy=0.084
which means that potentials of the form

V(ax) = 2V0772q [1 co TaX
k2K2(k?)(1 - g)2 K(k?)
. 2q ( os Tax COSZW&X)}
1+g+q®\ K(k?) KK/ |’

with k<<k,, which can be produced by using only two laser
beams, are approximated by E&.1) with accuracy higher
than 99%. The accuracy of the approximation increasds as
decreases, and thus E®.1) appears to be a good approxi-
mation for experimentally producible potentials for a rather
wide range of parameters.

After the change of notation,—t,x; —X, the system
(2.12, (2.13 takes the well known form

9Q; #Q rf Q.=

! &tl axl (b1|Q1|2+b0|Q2|2)Q1 VosrT(ax,k)Q,
(3.2

9Q,;  #Q r? Q=

! <9t2 ﬂxz (Bol Qu[? + 2| Q%) Q, = Vsrt(ax,KIQ;

(3.3

We restrict our attention to stationary solutions of CNLS
equations of the typésee alsq11])
QJ(X,t) = qJ'(X)eXF{_ Iw]t + |®J(X) + iKOyi]’ (34)

wherej=1, 2, kp; are constant phases, agdand 0;(x) are
real-valued functions connected by the relation

X d !
@)j(x):c,j X
0

— 35
q(x) .

(2.12 and(2.13 becauseQ, , describe modulations of the C;,j=1, 2, being constants of integration.
ground state. The effect of the trap potential on the conden- Following [5] we refer to solutions in the cas€s=0 and

sate dynamics is restored by reconstructi

from the

C;#0 as trivial and nontrivial phase solutions, respectively.

factorization(2.11). In the case when the healing length be-We notice that nontrivial phase solutions imply nonzero cur-
comes comparable with the longitudinal size of the condenrent of the matter—it is proportional tay;(x)[?d®;/dx=C;,

sate the developed approach is not valid any more.

for each of the components—along tkeaxis, and hence
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may have no direct relation to the experimental setting where
BEC's are confined to a parabolic trap, while it could be
relevant to BEC'’s having toroidal configurations. Also a sys-
tem of coupled NLS equations appears to be a general
model, having, for example, applications in nonlinear optics
(see, e.g9.[18]). Bearing this in mind we consider both types

In the casga) we replacev by iv;, set

Srlz(lavj,k):,81<0, e1:%(2—k2),

of solutions.
Substituting the ansaté3.4) in Egs. (2.12), (2.13 and
separating the real and imaginary part we get

0301xx — (0105 + bo03) a7 = Vosit(ex,K)a7 + w07 = CF,
(3.6)

aaxx— (0002 + byg2) s — VosrP(ax, k) g3 + w,03 = Ca.
(3.7

We analyze the solutions of type A in the terminology bf]
for qu,j =1, 2, as a quadratic function of @, k):

qf = Ajstf(ax.k) +Bj. (3.9

Inserting Eq«(3.8) in Egs.(3.6), (3.7) and equating the coef-

ficients of equal powers of ¢ax,k) results in the following

relations among the solution parameteysC;,A;, andB; and

the characteristic of the optical lattié4, «, andk:
(bo — )W (bo —by)W

A]_:—a A2:—1

A A (3.9

Bj=-BA. Cf=?ABi(B - D(L-BK), (3.10

W
o= (1+k?a? + K[ﬁlbl(bZ — bg) = Bobg(by — by)] - K2a?B;,
(3.11

wherej=1, 2 and

W=V, -2a%k%, A=bb,-b3. (3.12

The resultg3.8)<3.11) will be consistent with the param-

etrization (3.4) and (3.5) if we ensure that bothy;(x) and

0;(x) are real valued; this means tk@ztzo and qj&(x)ao.

1
&= -(2k*-1),

3 (3.19

Ll
e3_ 3(1+k)!

and rewrite the left-hand side in terms of Jacobi elliptic func-
tions:

o dusrf(au;k)

Snz(lav,k)fo snz(iav;k) - sr?(a’U;k)
o f __OQu
=~ Bx- o Sr(au,k) - B’

Skipping the details we find the explicit form 6f;(x):

X du
0;(x) = CJL Alsrf(au;k) = B;]

i olax+iav;
" ")
X+ =In ( )

R (T(ax—iavj)’

n=ialiav) + %v”— B(1-B)(1-KB). (3.16
]

These formulas provide an explicit expression for the so-
lutions Q;(x,t) with nontrivial phases; note that for real val-
ues ofv;,®;(x) are also real.

Now we can find the conditions under whi)(x,t) are
periodic. Indeed, from Eq3.16) we can calculate the quan-
tities T; satisfying

®j(X+T])_J(X):2Ter! (317)

with pjintegers. If the parametefd; andv;, related tog; via
(3.15), are such that the quantities

- mavj{(w) + wrj/a]_l= %l, i=1,2,
]

(3.19

are rational numberg.e., m; andp; are integerg thenQ;(x)
and Q,(x) are periodic with period3; andT,, respectively.
We recall thatw (and ") are the half periods of the Weier-

An elementary analysis shows that this is true provided onatrass functions. One can also find the smallest common pe-

of the following pairs of conditions is satisfigfl=1, 2):
(@ A=0, B=0, (3.13
1
1sg= P

(b) A =0, (3.1

The solutionsQ; in Eq. (3.4) arenot necessarily periodic

in x; periodicity will be present provided;(x) and ©;(x)

riod of Q;(x) and Q,(x).

Of course the trivial phase solutions considered in the
next sections are always periodic functionsxof

We will list also solutions for two particular choices of
b;,b,, andby which can be viewed as singular limits of the
generic case considered above. The first one is

b2=b.b, by # by, (3.19

have commensurable periods. This holds true only under cef¥hich corresponds to the cag¢g.13. Then the solution is
tain conditions on the solution parameters. Indeed, let us firiven by

calculate explicitly®;(x) by using the well known formula

(see, e.qg.[20)):

1 o(ax-av)
2x{(av) + aln—a(ax+ w) |

f" du _
o Aau) = (av) _//(a/v)

Please use standard Weierstradsinction.

b
AZ == _]-Al,

V, = 2k%a?,
b o= R«

w1 = (By = BYbA + (1 +KP)a? = o?K2By,

W= (B1 = B AL + (L +K2)a? = oK,
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TABLE I. Trivial phase solutions in the generic case= blbz—bgaﬁo. The conditions,k=1,..., 4, are
listed in Eq.(4.5).

Case 1 1= yiSn(ax, k) w1 =—hoY W+ a?(K2+1) Y=Y, W o
0= y,cn(ax, k) wy=—h,Y; W+ a? Y5=-Y,W
Case 2 01 = y2dn(ax, k) w1=-b, Y, W/ K2+ a?k? V==Y, W/K? cy
0= yoSN(ax, k) wp=—hyY, W/ K2+ a?(k2+1) Y=Y, W
Case 3 1= y1dn(ax, k) w1=—(bpY1+by Yo/ KR)W+ k2 Y2==Y,W/K? C3
0= y,cn(ax, k) wp=—(pY1+bo Yo/ KW+ o? Y=Y, W
Case 4 0= yiSn(ax, k) 0= wy=a?(K2+1) Y=Y, W G
2= yzsn(ax,k) Y2=Y,W
Case 5 1= yscn(ax, k) 01=wy=a?+W Y2==Y,W G
0= y2en(ax, K) %=-YaW
Case 6 o = y1dn(ax, k) 1= wy= a?k2+ W/ K2 Y2==Y, W/ K2 Cs
0= y,dn(ax, k) V==Y, W/ K2
ch = QZAJ?/gj(lgj -1(1-B K2, conveniently the initial phases of bo@(x). In most of the
following examples we have made this choice by requiring
Bi=-BA, j=12. (3.20 that ;/J?>O. Direct substitution of the above ansatz into Egs.

(3.2 and(3.3) provides a set of algebraic equations for the
The second particular case is the Manakov system; it corparameters whose solutions furnish exact ground states of
responds to the choide =b,=b. The result is the coupled BEC system.
For completeness, we shall briefly illustrate the calcula-
- _ 2 2_ 22n )
;== D(BiAs+ Bohy) + (1 +K)a” — k7B, tions for case 1 in Table (see alsd11]) for which

Cr= a®A7B(B - V(1 - Bk, 01(¥) = yisn(ax,K),  Qu(X) = yoCn(ax,k).  (4.2)

The functions in Eq(4.1) are solutions of E((3.2) provided
Bi=-BA, Vo=-b(Aj+A)+2%?  (3.2])  the constants satisfy the relations

j=1, 2. In the two-component CNLS equatio(6) and boyg—blyi—wzo,
(3.7) the constantb,,b,, andb, are assumed to be negative.
However, we have not used this restriction and our formulas

byys —bo¥i —~W=0,

are valid also for positive values bf,b,, andby. It is pos-
sible to analyze also nontrivial phase solutions in the trigo-

nometrick— 0 and hyperbolidk— 1 limits, which we will wy = a”(K+1)~by)5=0,
omit.
wy— a?—byy5=0, (4.3
IV. TRIVIAL PHASE SOLUTIONS whereW is defined in Eq(3.12. From this system we can

determine four of the constants in terms of the others. Let us
split them into two groups. The first one,

Gy = {by,b,,b0, W, a,k},

consists of constants determining the equations and the po-
tential and we assume they are fixed. The second group of
constants

In this section we consider solutions .2) and (3.3
with trivial phase, i.e.C;=C,=0,

Qi(x,t) =eiroig(x), j=1,2, (4.1

and we will look for different possible choices for the func-
tions g,(x) and g,(x). This type of solution is more flexible

and in certain cases survives reductions of the constgnts
=b,b, or the limit to the Manakov caseb,;=b,=h,. The G, = {w, w5, v1, Y2}

solutions are also relevant for processes in BEC's and non-h teri th di lt luti Next
linear optics[18]. characterizes the corresponding soliton solution. Next we

In the following we shall consider thg(x) to be ex- solve Eq.(4.3) and express the constars in terms Ofc.;l'
pressed in terms of Jacobi elliptic functions, i.e., we assume \E)Ve :ﬁ&'g (?r?ll?;;?gla”;:e tL%S?(l)t”SOfQL genr;?:t(_:o(r;]hmces of
the following ansatzq;(x) = ;J;(x), with J;(x),j=1, 2, being 0,1 2| using wing lon:
one of the Jacobi elliptic function &ax,k),cn(ax,k), or b, - by b, — by
dn(ax,k) and y; specifying the real amplitudes in E@.1). Y= 02— bb.’ Yo = Z—bb.’ (4.4
Note that the CNLS equation@®.2) and (3.3) possess the 0 F1T2 0 F1e2
gauge invariance; — Q;e™*0i. This allows one to fix up and the conditions
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TABLE Il. Trivial phase solutions in the cask= blbz—bS:O.

Case 1 0y = 18N ax, K) w1= (K2 +1)+hy 52 Y2=1b,/byy? W=0
2= y2cn(ax,k) wy=a?+byys
Case 2 0 = y.dn(ax, k) w1=a?k2+byy2 ¥5=k2\by/byy? W=0
0= y,SN(ax,K) wy=a?(K2+1) +byy?
W=>0, Y,>0, Y,<0 or V. MODULATIONAL INSTABILITY OF THE TRIVIAL
C1= PHASE SOLUTIONS AND LOCALIZED MATTER WAVE
W=0, Y2<0, ¥,>0 GENERATION
. Y,<0, Y;>0 or In this section we discuss the stability of the above solu-

tions from a physical point of view. To this end we remark
that all the trivial phase solutions are periodic functions of
period twice the period of the lattideecall that the perio@
W>0, Y,<0, Y,<0 or of the potential in Eq(3.1) is a=2K(k?)/a, whereK(k?) is
the complete elliptic integral of the first kihdThe corre-
sponding wave number of these solution&’rs 7r/a which is
just the boundary of the Brillouin zone of the uncoupled

W>0
Cr=
27 lw<0, Y,>0, Y;<0

W<0, Y,>0, Y;>0

{W> 0, Y,>0, Y;>0 or s per’\i;ladic linear system.  check th )
Cy= . oreover, one can easily check that each component
W=0, Y><0, ¥;<0 gi(x),i=1, 2, satisfies the Bloch condition

which ensure that?>0 andy5>0. _

In Tables Il and Ill we treat special situationd) b3 q;(x+R) =€ gi(x), R,=na, neN, (5.1
=b;b, (Table I) and (ii) b;=b,=b (Table Ill), where X
=-W/(by+b). The transition from the generic case(ip is
singular. The Manakov case is obtained fgy=b,=b,=b
and follows easily from the results in Table IlI.

i.e., the trivial phase solutions are exawtnlinear Bloch
states[a nonlinear Bloch state can be defined, in analogy
with the linear case, as a state for which E5}.1) is satis-
; y ... fied]. Although nonlinearity does not compromise the Bloch
The solutions in cases 1 and 2 exclude the possibility tQ,rqnerty (this being a direct consequence of the translation
have by=b, and ?>0. One can czheck that fdn, =b, we i, ariance of the lattice it can drastically influence the sta-
have y;+ ;=0 for case 1 and}+k*5=0 in case 2. In all bility of the states through a modulational instability mecha-
these cases eithef or 45 must be negative. nism.
_ In the last three cases the two components are propor- The nossibility that localized states of soliton type can be
tional: qy(x)=y0(x) and qy(x) is one of the three functions yenerated from modulational instability of Bloch states at the
sn(ax,k),cn(ax,k), or dr(ax,k). Such an ansatz imposes on gqge of the Brillouin zone was observed, both analytically

the systen(3.2) and(3.3) the compatibility condition and numerically, for a single component BEC in an optical
lattice in the cases of on@], two, and three spatial dimen-
Y?(b, = bg) + by —b; =0, (4.6)  sions[19]. In order to explore the same possibility of this

occurring also in the present periodic two-component system
which is equivalent tdb;=b,. If Eq. (4.6) is satisfied the we have recourse to numerical simulations. To this end we
system (3.2) and (3.3) reduces effectively to the one- have integrated Eq§3.2) and(3.3) with an operator splitting
component case, which has already been studiedf5se&  method using fast Fourier transform, taking as initial condi-
and the discussion in Sec. VI below. tions the exact solutions derived above modulated by a long

TABLE lll. Trivial phase solutions in the cads =h,=b.

Case 3 1= y1dn(ax, k) w1= k2= (by+b/k?)X Yi=-XIK? W<0
0= y,cn(ax, k) wp=a?—(b+by/kA)X Y5=-X

Case 4 1= 1SN ax, k) w1= wy=a?(K2+1) Y= 5=X W>0
2= y2Sn(ex, k)

Case 5 1= yscn(ax, k) w1= wy= a2+ W Y= y5=-X W<0
2= y2cn(ax,k)

Case 6 1= y1dn(ax, k) 1= wy= akZ+ W/ K2 Vo= y5=-X/K? W<0

0= y2dn(ax, k)
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1.0 d?pp, (X

- - L0 s ) 00 = £ By, (5.2

with n and k denoting the number of the zone and the wave

vector reduced to the first Brillouin zone, respectivglgtice

that we adopt again scaled variahleshe Bloch functions

are chosen to be normalized as follovi§l¢;(x)|?dx=1. One

can then use these Bloch states as the zero order in a multiple

scale expansion, in analogy to what was done in Sec. Il and
FIG. 1. Initial profile of a stable cn-cn solution plotted against IN R€f.[3]. Here we shall drop the details and present just the

the potential profilthick curve. The dashed and solid thin curves final system of equations for the amplitudes of the modula-

denote the modulus squared@fanda,, respectively. The param- tion field:

eters are fixed ak’=0.8,Vy=1,a=1,b,=-0.5 b;=-1.0 b,=-0.6.

0.5

0.0
0

The initial amplitudes are/;=0.414 039y,=0.925 82. 5'_(51 + ii@zl _ (51|61|2+50|62|2)61= 0, (5.3
wavelengthL(27w/k< /L) and small amplitude sinusoidal It 2My Ix
profile._ _ o _ (9(5 . (925 s L

In Fig. 1 we depict the initial profiles of the two- i—2+——22—(bo|Q1|2+b2|Q2|2)Q2=0, (5.4)
component cn-cn solution plotted against the potential pro- at  2M, dx

file, while in Fig. 2 we show the time evolution of this solu-
tion in the presence of a small modulation.

From Fig. 1 we see that the profiles remain stable for a 1 dzgj(K)
long time for both components, indicating that the cn-cn so- M. = T4l
lution is stable against small modulations. The main charac- !
teristic features of the modulational instability in the case of a
small amplitudes can be understood within the framework of by ,=by Zf | by A(X)|*dIx,
the approach developed [B,19. In this regard, we assume ' “Jo 7
that the perturbations of the nonlinear Bloch states have
wavelength much larger than the period of the potential in _ a
Egs.(3.2) and(3.3). Then, by analogy with Sec. I, one can bo = bof | p1(X)|? (X)X
look for solutionsQ; in the formQ; = ¢;(xo)Q;(X1,t1), where 0
¢i(Xo) denote two chosen Bloch functions, (x,) of the In Fig. 3 we depict the first two bands and the corresponding
potential V(ax), reciprocal effective masses of the underlying linear system in

o Eqg. (5.2. To study modulational instability, we look for a

o ' AT A ' solution of Egs.(5.3) and (5.4) in the form of a weakly
0.5 &AAA&A/ modulated constant background
. Q) = (3 + G it 4 B ikxritngrint
0 5 10 15 20 25

0.0
a -~ o~ -~ o~ o~
@ where Vj_:_bl’yzl_bo 2 V2:_b2’)/§_bo’)/2, and |CYJ|,|€]|
<[¥[% Next, we linearize the system with respectdg

where we have introduced the following notation:

100 and derive the dispersion relation of the resulting linear sys-
tem in the form
80
A?=(GI+ G5~ 2¢1Gy — 2x:,Go) A + G1G[(Gy + Zx1)

> X(Gy + 2¥,) — 4X5] = 0, (5.5

40 WhereA:QZ,Gj:K2/(2MJ—),}j:—ﬁ)] for j=1, 2, andy,
la,? o :_—S/ﬁzbo. The corres_ponding solutic_m of the coupled_non—
1.9 linear system(consisting of two nonlinear Bloch waves
o stable if both roots of Eq(5.5) are positive and unstable

0. 0
5 10 ‘E’ 20 25 otherwise(notice that this analysis gives stability with re-

spect to long wavelengths only
FIG. 2. Prospective view of the time evolution of the two- ~ As a particular example we shall consider the case in
component cn-cn solution reported in Fig. 1. To check stability thewhich both components belong to the same gap edge, i.e.,
solution was slightly modulated in space with a profile of the formwhenM;M,>0 and thereforé5,G,> 0. For the stability of
0.1c0%0.2). The top compares the profiles of the modulatedthe wave, then, the following conditions must be satisfied:
(dashed lingand exactcontinuous lingtwo component solution at 5 5
time t=100. Parameters are fixed as in Fig. 1. Gi+ G5 = 2x1G1 — 2x2G, > 0, (5.9
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ror oo T T from the side of negative effective masg#ss also follows
from the fact that the period of the waves is twice the period
of the potential and thus BEC's in the neighbor potential
wells have opposite phage3hus Eq.(5.6) is satisfied.

Next, we consider Eq(5.8) whose left- and right-hand
sides in the present case can be estimated|Mg=|M,|
~0.238; see Fig. ®)] 0.0266 and 0.352, respectively. Thus
the stability of the solution observed in numerical simula-
tions is confirmed by our stability analysis.

Let us now consider the case in which two atomic com-
ponents belong to different edges of the gap, so khat-0
and M, <0 (and henceG;>0 andG,<0) and restrict the
consideration to the case of positibg Then for the stability
of the wave, the following conditions must be satisfied:

s T T T T T :,‘ 2’)?161 < Gi+ G% + Z;(2|GZ|! (59)
6 ‘\“ ’,'I - 2}2261 < Gl|G2| + 2')?1|G2| . (510)
44 J In this case the first component, having positive effective
. e mass, has a self-attractive character, which might dominate
M2 T il ’ . the destructive action of the lattice when the matter localizes
around the potential maxima. In the absence of the second
04 ; component, this wave would be modulationally unstable, this
2] ' being a well known fact which can be seen also from Eqg.
' (5.9 (take’yp andG, to be equal to zeno On the other hand,
4 the second component, with negative effective mass, has a
e self-repulsive character, which is compensated by the poten-
06 -04 -02 00 02 04 06 tial barriers provided its localization occurs around the
(b) k minima of the lattice potential. This component is stable

. L even in the absence of the first harmonic and if its amplitude
_ FIG. 3. (a_t) Lowest two bands of the linear Sc.hrodlnger prqblem is large enoughior the amplitude of the first component is
in Eq. (5.2) in the reduced zone schem@) Reciprocal effective g 4"anoughit can help to stabilize the first component, as

masses of the firstcontinuous curveand seconddashed curve e : .
bands of(a). The parameter values of the potential are fixed as ing%:jo?(/)sr gg;nKI?;q.(E.Q). More specifically Eq(5.9) s satis

Fig. 1. For these parameters the period of the potential is 4.514
and the edges of the Brillouin zone are +0.696. Ble

3 <

= 5. (5.1)
618, + 200Go + 100 > - Hidke (5.7 b Mz
Since the cases that we are studying numerically and are %
physical interest correspond to negatiyeandb, b, > bé, we
have thafy;>0 andy,x,>%5. This implies that eithe(5.6)
or (5.7) is satisfied for alK if either M; ,<<0 or M; ,>0. In
the caseM, ,<0 the condition(5.7) can be viewed as a
constraint on the wave amplitude. Indeed, after some al
bra, one gets tha¢5.7) holds for anyK if the following
equation is satisfied:

The above analysis is in good qualitative agreement with
e results of numerical experiments. In particular, we find
that except for the cn-cn solution all other solutions display
modulational instability which leads to the formation of lo-
calized states. This is clearly seen in Fig. 4 where the time
evolution of the unstable sn-sn solution is reportadtice
98he formation of two localized excitations at tine40). As
for the previous case, the instability of this solution can be
easily understood from the fact that the initial distribution of
L MY)2 32 the matter corresponds to atoms condensed at the maxima of
(Maxa + Moxo)” < 4MiM(XaX = Xo)- 8 the potentiali.e., positions of unstable equilibrivmNotice
In the second case, i.e., whéfy ,>0, each of the states is that instability develops very quickljalready at time =15,
unstable with respect to large wavelength excitations. which is due to the large positive inverse effective mass; see
Now we can give a qualitative physical interpretation of Fig. 3(b)], out of which two-component bright soliton states
the result depicted in Figs. 1 and 2. As follows from theemerge, as clearly seen at tinve40. The bright soliton con-
explicit form of the solution, both components are describedsists of two coupled soliton®@ne for each componentone
by the states belonging to the same edge of the Brillouirbigger than the other. In Figs(& and %b), the time evolu-
zone. This also can be viewed by the fact that 1,~0.6  tion of the unstable sn-cn solutions with different amplitude
and thus the frequency of the solutionds-v; ,~1. Then, ratio of the sn and cn components is shown. In both cases the
from Fig. 3a) one concludes that both waves correspond tawo components are excited at the gap edges corresponding
the states at the edge of the Brillouin zone and border the ga effective masses having different signs and thus they cor-
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AN _

[ 60

20 1 _MOOQ&L-“O
AAAAAA |qi|2L&vo@oMl;2o
IZAMAM'") E%MO&AJ

t

la,

1 o 5 10 15 20 25 °
T T T 0 (a) X
0 5 10 15
: JAVAN
FIG. 4. Prospective view of the time evolution of the unstable 100

sn-sn solutionnotice that both components of the solution are de-
picted at each time The initial amplitudes are taken ag, 80
=0.414 039y,=0.925 820. Parameters are fixed as in Fig. 1, except
for k2=0.2. The modulational initial profile is taken as in Fig. 2. M-ec
Notice the emergence of coupled soliton components out of the

X - AVAYAVYAVYAYE t

instability. L 40

respond to the second case considered above, where Eq. |qfw
14 20

(5.17) is the condition for the wave stability. In Fig(& the

stable cn component is larger than the unstable sn one, while 0§
in Fig. 5b) we have the opposite. We see that, although in o.O T s 2 =0
both cases instability develops, the solution with larger stable (b) X 5 20

component is more stable and less effective in creating lo-
calized states than the other. This “induced” stabilization is FIG. 5. (a) Same as in Fig. 4 but for the unstable sn-cn solution.
in qualitative agreement with the prediction of the aboveThe initial amplitudes are taken a§=0.411 113 andy,=1.0877.
analysis(a detailed quantitative study of the instability of all Parameters are fixed as in Fig. 1 exceptligr—0.65. Notice that
possible mixing of stable and unstable components requiree cn component is larger and more stalig. Same as in Fig. 4
more investigations and it will be reported elsewhere but for the unstable cn-sn solution. The initial amplitudes are taken
It is interesting to investigate also solutions involving dn asy;=0.237 356, and,,=0.627 986. Parameters are fixed as in Fig.
components since these, in contrast with sn and cn compd- except fork?=0.4 andby=-0.65. Notice that the unstable sn
nents, have nonzero spatial average, i.e., they are periodi@mponent dominates and soliton generation is more effective.
waves on top of a constant background. In Fig. 6 we depict
the time evolution of a dn-dn solution from which we seewe have shown that, similarly to the one-component case
that it is modulationally unstable, leading to the formation of(see[3]), the presence of a periodic potential dramatically
bright solitons of the same type observed for the sn-sn casehanges the situation, allowing existence of modulationally
Similar time evolutions are also reported in Figs. 7 and 8 forstable and unstable Bloch waves independently of the type of
the cases sn-dn and cn-dn. Also in this case we observe thiite interaction. Also, in complete analogy with the one-
the mixing with the unstable sn component is more effectivecomponent case, instabilities of Bloch waves can be used for
than the one with the stable cn component in creating localthe sake of generation of solitary puls@sore precisely,
ized excitations of soliton typéthe three bright solitons coupled spatially localized states of both componenis
formed in Fig. 7 at tima&=10 remain equally spaced and this regard we remark that localized excitations obtained
well localized also for longer timesBy increasing the cn from trivial phase solutions are not stationary in time but
component of the cn-dn solution of Fig. 8, we also find thathave complicated dynamics, as is natural for waves produced
the time evolution becomes more stable, as discussed for tHeom modulational instability. A simple way to stabilize them
sn-cn case. A more detailed numerical analysis is, howeveimn time, however, is to increase the strength of the periodic
required to characterize the dependence of the modulationabtential when localized excitations are formed. This has the
instability on the many system parameters. effect of enhancing the confinement, by reducing the atomic
Before closing this section it is worth discussing thetunneling between potential wells, with the result of dynami-
physical implications of the above results. First we remarkcal stabilization(stationary states are produced after some
that in the absence of an optical lattigeeriodic potentigla  transieny. In Fig. 9 we show an example of this stabilization
homogeneous condensate with attractinepulsive interac-  for the case of the sn-sn solution in Fig. 4. In particular,
tions, negative(positive) b; in our case, is unstablgtable panel(a) of Fig. 9 shows the early stages of the time evolu-
with respect to long wavelength perturbations. In this sectioriion while panel(b) shows the dynamics of the stable multi-
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FIG. 8. Same as in Fig. 4 but for the cn-dn solution. Initial
FIG. 6. Same as in Fig. 4 but for the unstable dn-dn solutionamplitudes arey; =0.414 04 andy,=1.035 10. Other parameters are
Initial amplitudes arey;=-0.462 91 andy,=1.035099. Other pa- fixed as in Fig. 1.
rameters are fixed as in Fig. 1.

. L . VI. DISCUSSION
component soliton which is formed at later stages. For this

case, the strength of the potential was increased at time In this section we briefly discuss the Hamiltonian proper-
=15 by a factor of 6 with respect to its initial value. Outflow ties of the n-component NLS-type equation with external
boundary conditions were used to eliminate the excess mapotential, whose strength can be different for each compo-
ter and to isolate the single two-component soliton. Noticenem[ll];

that by increasing the potential strength just after the modu-

lational instability has developed, twitwo-componentsoli- X 1 P n
tons have been trapped in the middle of the Ijsee Fig. IEL= —;a—le +Vi(X) g+ 2 apl Py, (6.0
9(a)]. This solution, however, is unstable and after a long M p=1

transient it evolves into a stable single multicomponent soli-

ton oscillating in the potential we[see Fig. &)], remaining Vi(x) = —VojSI"?(aX,k), j=1,...n. (6.2
stable for the rest of the tim@otice that the two components ) ] o ) )
move in phase Two-hump—single-hump transitions were Such NLS-type equations with symmetric interacting matri-
also observed in the single component NLS equation witif€S 8jp=ap; are natural generalizations of EqS.2) and
periodic potential[21,22 where the analogy with intrinsic (3-3- The Hamiltonian of Eq(6.1) is

localized modes of discrete lattices was emphasized. The "y 2 ¢ 0

above stabilization technique was also shown to be effective H :f dx| > — 29 += > a2
< ) . _ ipl Vil 1¥p

for multidimensional soliton$19]. =1 2M | 9X 2{p=1

/A\“&AA‘ A +3 vj(x>|wj|2], (6.3
n =

30

where the integration goes over one pericg0<L.

It is pointed out in Ref[11] that nontrivial as well as
trivial phase solutions exist for generic choices of the param-
eters only provided the interaction matexs invertible. The
n=2 cases with degeneragamay exist for special choices of
the parameters; see Secs. Il and IV.

Here we remark that for somgnsatzethe n-component
NLS equation reduces to an effective one-component NLS-
type equation. Indeed, let us choose

2
lal
10

B0 =P, nxt) =e PN N, (6.4

whereN;>0 and®;(x) appears only in the nontrivial phase
case and is determined by
FIG. 7. Same as in Fig. 4 but for the sn-dn solution. Initial

amplitudes are/; =0.738 55 andy,=1.430 19. Other parameters are - L (6.5)
fixed as in Fig. 1 except fdoy=-0.7. dx  Njjg(x)?
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C;=0 and leads tdHy with M_;=0. This means that the
systems ofn equations with theAnsatz(6.4) reduce to just

200 one equation for(x,k); the remainingh—1 equations follow
as a consequence of the first one and the set of constraints on
the coefficientsy,N;, u;, ;. The same argument holds true

150 also for three of our solutions, cases 4, 5, and 6. In particular
the solutions cn-cn,sn-sn, and dn-dn are effectively one-
100 component ones. The class of solutions that describe the
t multicomponent effects should be analyzed by ugingatze
more general tha(6.4). The stability properties of these so-
50 lutions do not seem to be trivial consequences of the theo-

rems proved iff11] and deserve additional studies. It is also
worth remarking that our numerical results are complemen-
20 tary to the ones in Ref{11] due to the facts thati) our
interaction matricesa are chosen to be negative definite,
while in [11] a is positive definite{ii) our external potential
has sign opposite to the one fihl]. These two differences
700 account for the different stability properties of otherwise
seemingly equivalent solutions, e.g., cn-cn and dn-dn.
Before closing this section, we shall briefly discuss pos-
sible experimental realizations of the described phenomena.
To this regard, we remark that for condensates with repulsive
-6001 interactions one could achieve desired initial states by adia-
I, batic switching on the lattice potential, allowing atoms to
E 550 acquire a stable distribution, which subsequently can be
made unstable by means of abrupt change of the lattice pa-
— rameters or by accelerating the lattice until the state ap-
0 5 10 15 2% proaches the edge of the Brillouin zone, where modulational
(b) X instability develops. In the case of attractive interactions, to
FIG. 9. Time evolution of a two-component soliton resulting avoid the phenomenon of collapse present in the multidimen-

from the modulational instability of the sn-sn solution. ParametersSional case, one should prepare the apparatus so as to con-

are the same as in Fig. @) Early stages of the stabilization pro- form to the criterion of validity of the 1D approximation. In
cess(b) The two-component soliton oscillating inside the potential this case, the respective initial conditions could be created by

well at later stages of the time evolution. The soliton dynamics haswitching the sign of the interactions by means of a Fesh-
been stabilized by increasing the strength of the periodic potentidbach resonanc¢23]. Thus, one could start from a two-
by a factor of 6 with respect to the initial value at the early stagescomponent BEC with negligibly small scattering lengths
(t=15) of the instability process. Outflow boundary conditions have(i_e_, a gas of almost noninteracting atgnfgst loaded in an
been used to eliminate the excess matter. optical lattice in a stable uniform atomic configuration and
subsequently exposed to an external magnetic field, allowing
Inserting Eq(6.4) into the Hamiltonian we easily get the effective control of the signs and magnitudes of the scatter-

650

following reduced Hamiltoniatd=Hq+H ey Where: ing lengths via the Feshbach resonance. In this situation the
Mol aw|2 M., W, two-component BEC should either remain stable or develop
Hred=J dx S oxl *aap +V(x)|y2+ ?\dfl“ , instabilities of the type described above, depending on the
IX i sign of the scattering lengths. We hope these results will be
n n o of interest to experimentalists working on mixtures of Bose-
-~ N -~ S Einstein condensates.
MO - E ’ M—l - ’
=1 Mi =1 Nj

n VIl. CONCLUSIONS

V(x) = vsrP(ax,k), Wo= > ajN;N,,

ip=1 In conclusion, we have considered the two-component
CNLS equation with an elliptic potential as a model for

n n
C L trapped, quasi-one-dimensional two-component BEC's.
= N = = ! L . . .
vo= %VOJNJ' Ho = 21 M_arg Yx.1) o (6.6 Classes of elliptic solutions have been analyzed in detail. In
: = B particular we considered intrinsic two-component solutions,
which describes the dynamics of the effective figltk,t).  i.e., ones with nonproportional amplitudes. The role played

The result for the trivial phase solution case is obtained wity these solutions as initial states from which localized mat-
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