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Coupled nonlinear Schrödinger(CNLS) equations with an external elliptic function potential model with
high accuracy a quasi-one-dimensional interacting two-component Bose-Einstein condensate(BEC) trapped in
a standing wave generated by a few laser beams. The construction of stationary solutions of the two-component
CNLS equation with a periodic potential is detailed and their stability properties are studied by direct numeri-
cal simulations. Some of these solutions allow reduction to the Manakov system. From a physical point of view
the trivial phase solutions can be interpreted as exact Bloch states at the edge of the Brillouin zone. Some of
them are stable while others are found to be unstable against weak modulations of long wavelength. By
numerical simulations it is shown that the modulationally unstable solutions lead to the formation of localized
ground states of the coupled BEC system.
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I. INTRODUCTION

Recent experiments on dilute-gas Bose-Einstein conden-
sates(BEC’s) have generated great interest from both theo-
retical and experimental points of view[1]. At ultralow tem-
peratures the mean-field description for the macroscopic
BEC wave function is constructed using the Hartree-Fock
approximation and results in the Gross-Pitaevskii(GP) equa-
tion [1]. The latter reduces to the one-dimensional(1D) non-
linear Schrödinger(NLS) equation with an external poten-
tial, in particular, when the transverse dimensions of the
condensate are much less than its healing length and its lon-
gitudinal dimension is of the order of or much longer than
the healing length(see, e.g.,[2,3]). This is known as the
quasi-one-dimensional(quasi-1D) regime of the GP equa-
tion. In this regime BEC’s remain phase coherent, and the
governing equations are one dimensional. Several families of
stationary solutions for the cubic NLS equation with an el-
liptic function potential have been recently presented in Refs.
[4,5] and their stability has been examined by analytic and
numerical methods[5–7].

Experimental realization of two-component BEC’s[8,9]
has stimulated considerable attention in general[9] and in
particular in the quasi-1D regime[10,11] when the GP equa-
tions for two interacting BEC’s reduce to coupled nonlinear
Schrödinger(CNLS) equations with an external potential. In

specific cases the two-component CNLS equations can be
reduced to the Manakov system[12] with an external poten-
tial.

An important role in analyzing these effects was played
by the elliptic and periodic solutions of the above-mentioned
equations. Such solutions for the one-component NLS equa-
tion are well known; see[13] and the numerous references
therein. Elliptic solutions for the CNLS equation and Mana-
kov system were derived in[14–16].

In the presence of an external elliptic potential explicit
stationary solutions for the NLS equation were derived in
[5–7]. These results were generalized to then-component
CNLS equation in[11].

We study exact stationary two-component solutions of the
CNLS equation with elliptic external potential. Our main aim
and interest will be on the physical implications of these
solutions, in particular on the role played by unstable solu-
tions in the generation of two-component solitons via the
mechanism of modulational instability. Special attention will
be devoted to a class of solutions with degenerate interaction
matrices, as well as to the problem of the reduction of the
original three-dimensional coupled GP equations to the
coupled one-dimensional NLS equations. In particular, a cri-
terion for the 1D approximation to be valid is derived. Pos-
sibilities of a physical realization of the considered situations
are also briefly discussed.

The paper is organized as follows. In Sec. II we show how
to derive 1D equations for coupled BEC’s starting from the
original three-dimensional problem using a multiple scale
expansion in the small amplitude limit. In Sec. III we present
an exact solution of the CNLS system with nontrivial phases.
Section IV concerns stationary solutions with trivial phases
for both proportional and nonproportional components. In
Sec. V we discuss the physical properties of the trivial phase
solutions and show, by means of direct numerical simula-
tions, how these solutions may lead to the formation of lo-
calized matter waves through the mechanism of modula-
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tional instability. In Sec. VI we compare the present results
with previous work and briefly discuss the possibility of ex-
perimental implementations. Finally, in Sec. VII we summa-
rize the main conclusions of the paper.

II. BASIC EQUATIONS

At very low temperatures, when the mean-field approxi-
mation is applicable, the evolution of two interacting BEC’s
can be described by two coupled GP equations(j =1, 2) (see,
e.g.,[9,10])

i"
] C j

] t
= F−

"2

2m
¹2 + Vjsr d +

4p"2

m
o

l=1,2
ajl uClu2GC j ,

s2.1d

where the atomic masses of both components are assumed to
be equal,Vjsr d is an external trap potential, andaij are the
scattering lengths of the respective atomic interactions(other
notations are standard). In the case when the potential con-
sists of a superposition of a magnetic trap providing a cigar-
shaped condensate(elongated, say, along thex axis) and an
optical lattice inducing a trap potential which is assumed to
be periodic along thex axis, one has(j =1, 2)

Vjsr d =
m

2
V j

2sl2x2 + y2 + z2d + Uskxd, s2.2d

Uskxd = U„ksx + Ld…. s2.3d

Herel describes the aspect ratio of the condensate, which is
assumed to be the same for both components. For the cigar-
shaped condensatesl!1 with typical values 10−2–10−4.

Although in the last expression we have imposed equality
of the optical potential for both components, in a generic
case one has to distinguish the linear oscillator frequencies
V1 and V2 when considering the two components corre-
sponding to the different magnetic moments. For example, in
the experimental settings of[17] with 87Rb atoms V
=V2/V1=Î2. This fact has a natural implication for the re-
sulting form of the effective system of coupled 1D NLS
equations. Indeed, different oscillator frequencies mean that
two components are located in two different parabolic poten-
tials, and thus their effective densities are different when the
number of atoms is equal. As a consequence, even at ap-
proximately equals-wave scattering lengths, and thus for
a11<a22, the two components will experience different non-
linearities, proportional to the atomic densities.

Another important issue to be mentioned here is that a
cigar-shaped BEC can be viewed as a waveguide for matter
waves. As such it is characterized by its mode structure. As is
well known (compare with the nonlinear optical waveguides
[18]) the intrinsic nonlinearity of a BEC results in mode
interaction(and thus energy distribution among modes). If,
however, the nonlinearity is weak enough, the main state of
the condensate can be considered as a weakly modulated
ground state, as it is clear that for a two-component BEC the
corresponding small parameter is the ratio of the energy of
two-body interactions 4p"2Njl

1/2ajj /maj
3 (hereaj =Î" /mV j

is the linear oscillator length andNj =euC ju2dr is the number
of atoms of the j th component) to the kinetic energy
"2/2maj

2. In other words, the small parameter of the problem
can be identified formally ase=8pN1a11

Îl /a1!1, where
N=N1+N2 is the total number of atoms. Here we have taken
into account thata1 anda2 as well as the scattering lengths
between atomsaij are all of the same order. In this situation
a self-consistent reduction of the original 3D system(2.1) to
the effective 1D system of coupled equations can be pro-
vided by means of the multiple scale technique. Since the
details of such a reduction have already been published else-
where [3,19] for a single component BEC, here we only
outline the main steps.

Let us first introduce dimensionless variables

r 8 = sx8,r '8 d =
r

a1
, t8 =

1

2
V1t, c j =Î2a1

3

N
C j ,

and rewrite Eqs.(2.1) in the form

iċ1 = f− D8 + U1sr '8 ,x8d + g11uc1u2 + g21uc2u2gc1, s2.4d

iċ2 = f− D8 + U2sr '8 ,x8d + g12uc1u2 + g22uc2u2gc2, s2.5d

wherek8=ka1,

U1sr '8 ,x8d = l2x82 + r '8
2 + Vsk8x8d, s2.6d

U2sr '8 ,x8d = V2sl2x82 + r '8
2d + Vsk8x8d,

V = a1
2/a2

2, Vsk8x8d =
2

"V1
Usk8x8d, s2.7d

and gij =4pNaij /a1. The next consideration depends on the
magnitude ofk [it is assumed thatU8sxd /Usxd=Os1d]. One
can distinguish three main cases.

(i) k8,1. In this case the periodicity is of order of the
transverse size of the condensate and much less than the
healing length of each of the components,j j =s8pnjajd−1/2,
where nj is the density of thej th component:aj

2/j j
2,e.

Then, for excitations of the BEC having characteristic scales
of order of the healing length, the periodicity modifies the
spectrum of the underlying system, introducing the effective
group velocity dispersion. The resulting equations are just
CNLS equations without a periodic potential. This is the case
similar to one considered in[3] for the case of a single-
component BEC.

(ii ) k8!e (sayk,e2). In this case the periodic potential
can be considered as smoothly varying on scales of order of
the healing lengths, and somehow can be viewed as a limit of
the case considered below.

(iii ) k8=ae wherea,1. This is the case when the poten-
tial periodicity is of the order of the effective length of the
nonlinearity(i.e., of the healing length). Below we concen-
trate on this last case.

To this end we consider two eigenvalue problems

s− D8 + l2x82 + r '8
2dw1 = E1w1,
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s− D8 + V2sl2x82 + r '8
2ddw2 = E2w2 s2.8d

whose normalized ground states are well known:

w1 =
l1/4

p3/4e−slx82+r '8
2d/2,

w2 =
V3/4l1/4

p3/4 e−sV/2dslx82+r '8
2d, s2.9d

andEj =V j−1sl+2d.
The next steps are conventional for the multiple scale ex-

pansion(see, e.g.,[3]); namely, we introduce scaled vari-
ablesxn=enx8 ,r n=enr '8 , and tn=ent8 (n=0, 1, 2,…) which
are considered as independent, and look for the solution of
Eqs.(2.4) and (2.5) in the form

c j =Î 1

ug11ul1/2sec j
s1d + e2c j

s2d + ¯d s2.10d

with

c j
s1d = Qjsx1,t2dw jsx0,r 0de−iEjt0, j = 1,2. s2.11d

HereQjsx1,t2d describes slow modulation of the background
state(2.9) due to the nonlinearity.

Substituting Eq.(2.10) in Eqs.(2.4) and(2.5), equating all
terms at each of thee orders, and excluding secular terms, in
the ordere3 we obtain

i
] Q1

] t2
= −

]2Q1

] x1
2 + Vsax1dQ1 + b1uQ1u2Q1 + b0uQ2u2Q1,

s2.12d

i
] Q2

] t2
= −

]2Q2

] x1
2 + Vsax1dQ2 + b0uQ1u2Q2 + b2uQ2u2Q2,

s2.13d

where

b1 = sgnsg11d E uw1u4dr =
sgnsg11d
23/2p3/2 ,

b0 =
g12

ug11u
E uw1u2uw2u2dr =

1

p3/2S V

V + 1
D3/2 a12

ua11u
,

b2 =
g22

ug11u
E uw2u4dr =

V3/2

23/2p3/2

a22

ua11u
,

and it is taken into account thata12=a21. The system(2.12)
and (2.13) is the subject of our main interest.

It is to be emphasized here that, although the trap poten-
tial is included in the evolution equations[see Eqs.(2.1) and
(2.2)], it does not appear in an explicit form in the system
(2.12) and (2.13) becauseQ1,2 describe modulations of the
ground state. The effect of the trap potential on the conden-
sate dynamics is restored by reconstructingc j

s1d from the
factorization(2.11). In the case when the healing length be-
comes comparable with the longitudinal size of the conden-
sate the developed approach is not valid any more.

III. STATIONARY SOLUTIONS WITH NONTRIVIAL
PHASES

An appropriate class of periodic potentials to model the
quasi-1D confinement produced by a standing light wave is
given by [5–7,11]

Vsaxd = V0sn2sax,kd, s3.1d

where snsax,kd denotes the Jacobian elliptic sine function
with elliptic modulus 0økø1. In experiments such poten-
tials can be well approximated by only a few laser beams.
Indeed, one can use the well known formula[20]

snsax;kd =
2p

kKsk2don=0

`
qn+1/2

1 − q2n+1sin
s2n + 1dpax

2Ksk2d

whereq=exph−pfKs1−k2d /Ksk2dgj andKsk2d is a complete
elliptic integral of the first kind. Then, even for relatively
large elliptic modulus, sayk0

2=0.9, one obtainsq<0.084
which means that potentials of the form

Vsaxd =
2V0p2q

k2K2sk2ds1 − qd2F1 − cos
pax

Ksk2d

+
2q

1 + q + q2Scos
pax

Ksk2d
− cos

2pax

Ksk2d
DG ,

with k,k0, which can be produced by using only two laser
beams, are approximated by Eq.(3.1) with accuracy higher
than 99%. The accuracy of the approximation increases ask
decreases, and thus Eq.(3.1) appears to be a good approxi-
mation for experimentally producible potentials for a rather
wide range of parameters.

After the change of notationt2→ t ,x1→x, the system
(2.12), (2.13) takes the well known form

i
] Q1

] t
+

]2Q1

] x2 − sb1uQ1u2 + b0uQ2u2dQ1 − V0sn2sax,kdQ1 = 0,

s3.2d

i
] Q2

] t
+

]2Q2

] x2 − sb0uQ1u2 + b2uQ2u2dQ2 − V0sn2sax,kdQ2 = 0.

s3.3d

We restrict our attention to stationary solutions of CNLS
equations of the type(see also[11])

Qjsx,td = qjsxdexpf− iv jt + iQ jsxd + ik0,jg, s3.4d

where j =1, 2, k0,j are constant phases, andqj andQ jsxd are
real-valued functions connected by the relation

Q jsxd = C jE
0

x dx8

qj
2sx8d

, s3.5d

C j , j =1, 2, being constants of integration.
Following [5] we refer to solutions in the casesC j =0 and

C j Þ0 as trivial and nontrivial phase solutions, respectively.
We notice that nontrivial phase solutions imply nonzero cur-
rent of the matter—it is proportional touqjsxdu2dQ j /dx=C j,
for each of the components—along thex axis, and hence
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may have no direct relation to the experimental setting where
BEC’s are confined to a parabolic trap, while it could be
relevant to BEC’s having toroidal configurations. Also a sys-
tem of coupled NLS equations appears to be a general
model, having, for example, applications in nonlinear optics
(see, e.g.,[18]). Bearing this in mind we consider both types
of solutions.

Substituting the ansatz(3.4) in Eqs. (2.12), (2.13) and
separating the real and imaginary part we get

q1
3q1xx − sb1q1

2 + b0q2
2dq1

4 − V0sn2sax,kdq1
4 + v1q1

4 = C1
2,

s3.6d

q2
3q2xx − sb0q1

2 + b2q2
2dq2

4 − V0sn2sax,kdq2
4 + v2q2

4 = C2
2.

s3.7d

We analyze the solutions of type A in the terminology of[11]
for qj

2, j =1, 2, as a quadratic function of snsax,kd:

qj
2 = Ajsn2sax,kd + Bj . s3.8d

Inserting Eq.(3.8) in Eqs.(3.6), (3.7) and equating the coef-
ficients of equal powers of snsax,kd results in the following
relations among the solution parametersv j ,C j ,Aj, andBj and
the characteristic of the optical latticeV0,a, andk:

A1 =
sb0 − b2dW

D
, A2 =

sb0 − b1dW
D

, s3.9d

Bj = − b jAj, C j
2 = a2Aj

2b jsb j − 1ds1 − b jk
2d, s3.10d

v j = s1 + k2da2 +
W

D
fb1b1sb2 − b0d − b2b0sb0 − b1dg − k2a2b j ,

s3.11d

where j =1, 2 and

W= V0 − 2a2k2, D = b1b2 − b0
2. s3.12d

The results(3.8)–(3.11) will be consistent with the param-
etrization (3.4) and (3.5) if we ensure that bothqjsxd and
Q jsxd are real valued; this means thatC j

2ù0 andqj
2sxdù0.

An elementary analysis shows that this is true provided one
of the following pairs of conditions is satisfied(j =1, 2):

sad Aj ù 0, b j ø 0, s3.13d

sbd Aj ø 0, 1ø b j ø
1

k2 . s3.14d

The solutionsQj in Eq. (3.4) arenot necessarily periodic
in x; periodicity will be present providedqjsxd and Q jsxd
have commensurable periods. This holds true only under cer-
tain conditions on the solution parameters. Indeed, let us first
calculate explicitlyQ jsxd by using the well known formula
(see, e.g.,[20]):

E
0

x du

psaud − psavd
=

1

p8savdF2xzsavd +
1

a
ln

ssax − avd
ssax + avdG .

Please use standard Weierstrassp function.

In the case(a) we replacev by iv j, set

sn2siav j ;kd = b j , 0, e1 =
1

3
s2 − k2d,

e2 =
1

3
s2k2 − 1d, e3 = −

1

3
s1 + k2d, s3.15d

and rewrite the left-hand side in terms of Jacobi elliptic func-
tions:

sn2siav;kdE
0

x dusn2sau;kd
sn2siav;kd − sn2sau;kd

= − b jx − b j
2E

0

x du

sn2sau,kd − b j

.

Skipping the details we find the explicit form ofQ jsxd:

Q jsxd = C jE
0

x du

Ajfsn2sau;kd − b jg
= − t jx +

i

2
ln

ssax + iav jd
ssax − iav jd

,

t j = iazsiav jd +
a

b j

Î− b js1 − b jds1 − k2b jd. s3.16d

These formulas provide an explicit expression for the so-
lutions Qjsx,td with nontrivial phases; note that for real val-
ues ofv j ,Q jsxd are also real.

Now we can find the conditions under whichQjsx,td are
periodic. Indeed, from Eq.(3.16) we can calculate the quan-
tities Tj satisfying

Q jsx + Tjd − Q jsxd = 2ppj , s3.17d

with pjintegers. If the parametersb j andv j, related tob j via
(3.15), are such that the quantities

− pfav jzsvd + vt j/ag−1 =
mj

pj
, j = 1,2, s3.18d

are rational numbers(i.e., mj andpj are integers), thenQ1sxd
andQ2sxd are periodic with periodsT1 andT2, respectively.
We recall thatv (andv8) are the half periods of the Weier-
strass functions. One can also find the smallest common pe-
riod of Q1sxd andQ2sxd.

Of course the trivial phase solutions considered in the
next sections are always periodic functions ofx.

We will list also solutions for two particular choices of
b1,b2, andb0 which can be viewed as singular limits of the
generic case considered above. The first one is

b0
2 = b1b2, b1 Þ b2, s3.19d

which corresponds to the case(3.13). Then the solution is
given by

A2 = −
b1

b0
A1, V0 = 2k2a2,

v1 = sb2 − b1db1A1 + s1 + k2da2 − a2k2b1,

v2 = sb1 − b2db1A1 + s1 + k2da2 − a2k2b2,
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C j
2 = a2Aj

2b jsb j − 1ds1 − b jk
2d,

Bj = − b jAj, j = 1,2. s3.20d

The second particular case is the Manakov system; it cor-
responds to the choiceb1=b2=b. The result is

v j = − bsb1A1 + b2A2d + s1 + k2da2 − a2k2b j ,

C j
2 = a2Aj

2b jsb j − 1ds1 − b jk
2d,

Bj = − b jAj, V0 = − bsA1 + A2d + 2k2a2, s3.21d

j =1, 2. In the two-component CNLS equations(3.6) and
(3.7) the constantsb1,b2, andb0 are assumed to be negative.
However, we have not used this restriction and our formulas
are valid also for positive values ofb1,b2, andb0. It is pos-
sible to analyze also nontrivial phase solutions in the trigo-
nometrick→0 and hyperbolick→1 limits, which we will
omit.

IV. TRIVIAL PHASE SOLUTIONS

In this section we consider solutions of(3.2) and (3.3)
with trivial phase, i.e.,C1=C2=0,

Qjsx,td = e−iv j t+ik0,jqjsxd, j = 1,2, s4.1d

and we will look for different possible choices for the func-
tions q1sxd andq2sxd. This type of solution is more flexible
and in certain cases survives reductions of the constantsb0

2

=b1b2 or the limit to the Manakov case:b1=b2=b0. The
solutions are also relevant for processes in BEC’s and non-
linear optics[18].

In the following we shall consider theqisxd to be ex-
pressed in terms of Jacobi elliptic functions, i.e., we assume
the following ansatz:qjsxd=g jJjsxd, with Jjsxd , j =1, 2, being
one of the Jacobi elliptic function snsax,kd ,cnsax,kd, or
dnsax,kd andgi specifying the real amplitudes in Eq.(4.1).
Note that the CNLS equations(3.2) and (3.3) possess the
gauge invarianceQj →Qje

−ik0,j. This allows one to fix up

conveniently the initial phases of bothQjsxd. In most of the
following examples we have made this choice by requiring
that g j

2.0. Direct substitution of the above ansatz into Eqs.
(3.2) and (3.3) provides a set of algebraic equations for the
parameters whose solutions furnish exact ground states of
the coupled BEC system.

For completeness, we shall briefly illustrate the calcula-
tions for case 1 in Table I(see also[11]) for which

q1sxd = g1snsax,kd, q2sxd = g2cnsax,kd. s4.2d

The functions in Eq.(4.1) are solutions of Eq.(3.2) provided
the constants satisfy the relations

b0g2
2 − b1g1

2 − W= 0,

b2g2
2 − b0g1

2 − W= 0,

v1 − a2sk2 + 1d − b0g2
2 = 0,

v2 − a2 − b2g2
2 = 0, s4.3d

whereW is defined in Eq.(3.12). From this system we can
determine four of the constants in terms of the others. Let us
split them into two groups. The first one,

G1 . hb1,b2,b0,W,a,kj,

consists of constants determining the equations and the po-
tential and we assume they are fixed. The second group of
constants

G2 . hv1,v2,g1,g2j

characterizes the corresponding soliton solution. Next we
solve Eq.(4.3) and express the constantsG2 in terms ofG1.

We have collected all the results for generic choices of
b0,b1, andb2 in Table I using the following notation:

Y1 =
b1 − b0

b0
2 − b1b2

, Y2 =
b2 − b0

b0
2 − b1b2

, s4.4d

and the conditions

TABLE I. Trivial phase solutions in the generic caseD;b1b2−b0
2Þ0. The conditionsck,k=1,…, 4, are

listed in Eq.(4.5).

Case 1 q1=g1snsax,kd v1=−b0Y1W+a2sk2+1d g1
2=Y2W c1

q2=g2cnsax,kd v2=−b2Y1W+a2 g2
2=−Y1W

Case 2 q1=g1dnsax,kd v1=−b1Y2W/k2+a2k2 g1
2=−Y2W/k2 c2

q2=g2snsax,kd v2=−b0Y2W/k2+a2sk2+1d g2
2=Y1W

Case 3 q1=g1dnsax,kd v1=−sb0Y1+b1Y2/k2dW+a2k2 g1
2=−Y2W/k2 c3

q2=g2cnsax,kd v2=−sb2Y1+b0Y2/k2dW+a2 g2
2=−Y1W

Case 4 q1=g1snsax,kd v1=v2=a2sk2+1d g1
2=Y2W c4

q2=g2snsax,kd g2
2=Y1W

Case 5 q1=g1cnsax,kd v1=v2=a2+W g1
2=−Y2W c3

q2=g2cnsax,kd g2
2=−Y1W

Case 6 q1=g1dnsax,kd v1=v2=a2k2+W/k2 g1
2=−Y2W/k2 c3

q2=g2dnsax,kd g2
2=−Y1W/k2
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c1 = HW. 0, Y2 . 0, Y1 , 0 or

W, 0, Y2 , 0, Y1 . 0
J

c2 = HW. 0, Y2 , 0, Y1 . 0 or

W, 0, Y2 . 0, Y1 , 0
J

c3 = HW. 0, Y2 , 0, Y1 , 0 or

W, 0, Y2 . 0, Y1 . 0
J

c4 = HW. 0, Y2 . 0, Y1 . 0 or

W, 0, Y2 , 0, Y1 , 0
J s4.5d

which ensure thatg1
2.0 andg2

2.0.
In Tables II and III we treat special situations:(i) b0

2

=b1b2 (Table II) and (ii ) b1=b2=b (Table III), where X
=−W/ sb0+bd. The transition from the generic case to(i) is
singular. The Manakov case is obtained forb0=b1=b2=b
and follows easily from the results in Table III.

The solutions in cases 1 and 2 exclude the possibility to
have b1=b2 and g j

2.0. One can check that forb1=b2 we
haveg1

2+g2
2=0 for case 1 andg1

2+k2g2
2=0 in case 2. In all

these cases eitherg1
2 or g2

2 must be negative.
In the last three cases the two components are propor-

tional: q1sxd=gq2sxd andq1sxd is one of the three functions
snsax,kd ,cnsax,kd, or dnsax,kd. Such an ansatz imposes on
the system(3.2) and (3.3) the compatibility condition

g2sb2 − b0d + b0 − b1 = 0, s4.6d

which is equivalent tob1=b2. If Eq. (4.6) is satisfied the
system (3.2) and (3.3) reduces effectively to the one-
component case, which has already been studied; see[5–7]
and the discussion in Sec. VI below.

V. MODULATIONAL INSTABILITY OF THE TRIVIAL
PHASE SOLUTIONS AND LOCALIZED MATTER WAVE

GENERATION

In this section we discuss the stability of the above solu-
tions from a physical point of view. To this end we remark
that all the trivial phase solutions are periodic functions of
period twice the period of the lattice[recall that the perioda
of the potential in Eq.(3.1) is a=2Ksk2d /a, whereKsk2d is
the complete elliptic integral of the first kind]. The corre-
sponding wave number of these solutions isK=p /a which is
just the boundary of the Brillouin zone of the uncoupled
periodic linear system.

Moreover, one can easily check that each component
qisxd , i =1, 2, satisfies the Bloch condition

qjsx + Rnd = eiKRnqjsxd, Rn = na, n P N, s5.1d

i.e., the trivial phase solutions are exactnonlinear Bloch
states[a nonlinear Bloch state can be defined, in analogy
with the linear case, as a state for which Eq.(5.1) is satis-
fied]. Although nonlinearity does not compromise the Bloch
property (this being a direct consequence of the translation
invariance of the lattice), it can drastically influence the sta-
bility of the states through a modulational instability mecha-
nism.

The possibility that localized states of soliton type can be
generated from modulational instability of Bloch states at the
edge of the Brillouin zone was observed, both analytically
and numerically, for a single component BEC in an optical
lattice in the cases of one[3], two, and three spatial dimen-
sions [19]. In order to explore the same possibility of this
occurring also in the present periodic two-component system
we have recourse to numerical simulations. To this end we
have integrated Eqs.(3.2) and(3.3) with an operator splitting
method using fast Fourier transform, taking as initial condi-
tions the exact solutions derived above modulated by a long

TABLE II. Trivial phase solutions in the caseD;b1b2−b0
2=0.

Case 1 q1=g1snsax,kd v1=a2sk2+1d+b1g1
2 g2

2=Îb1/b2g1
2 W=0

q2=g2cnsax,kd v2=a2+b0g1
2

Case 2 q1=g1dnsax,kd v1=a2k2+b1g1
2 g2

2=k2Îb1/b2g1
2 W=0

q2=g2snsax,kd v2=a2sk2+1d+b0g1
2

TABLE III. Trivial phase solutions in the caseb1=b2=b.

Case 3 q1=g1dnsax,kd v1=a2k2−sb0+b/k2dX g1
2=−X/k2 W,0

q2=g2cnsax,kd v2=a2−sb+b0/k2dX g2
2=−X

Case 4 q1=g1snsax,kd v1=v2=a2sk2+1d g1
2=g2

2=X W.0

q2=g2snsax,kd
Case 5 q1=g1cnsax,kd v1=v2=a2+W g1

2=g2
2=−X W,0

q2=g2cnsax,kd
Case 6 q1=g1dnsax,kd v1=v2=a2k2+W/k2 g1

2=g2
2=−X/k2 W,0

q2=g2dnsax,kd
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wavelengthLs2p /k!p /Ld and small amplitude sinusoidal
profile.

In Fig. 1 we depict the initial profiles of the two-
component cn-cn solution plotted against the potential pro-
file, while in Fig. 2 we show the time evolution of this solu-
tion in the presence of a small modulation.

From Fig. 1 we see that the profiles remain stable for a
long time for both components, indicating that the cn-cn so-
lution is stable against small modulations. The main charac-
teristic features of the modulational instability in the case of
small amplitudes can be understood within the framework of
the approach developed in[3,19]. In this regard, we assume
that the perturbations of the nonlinear Bloch states have
wavelength much larger than the period of the potential in
Eqs.(3.2) and (3.3). Then, by analogy with Sec. II, one can

look for solutionsQj in the formQj =f jsx0dQ̃jsx1,t1d, where
f jsx0d denote two chosen Bloch functionsfn,ksx0d of the
potentialVsaxd,

−
d2fn,ksxd

dx2 + Vsaxdfn,ksxd = Enskdfn,ksxd, s5.2d

with n andk denoting the number of the zone and the wave
vector reduced to the first Brillouin zone, respectively(notice
that we adopt again scaled variables). The Bloch functions
are chosen to be normalized as follows:e0

auf jsxdu2dx=1. One
can then use these Bloch states as the zero order in a multiple
scale expansion, in analogy to what was done in Sec. II and
in Ref. [3]. Here we shall drop the details and present just the
final system of equations for the amplitudes of the modula-
tion field:

i
] Q̃1

] t
+

1

2M1

]2Q̃1

] x2 − sb̃1uQ̃1u2 + b̃0uQ̃2u2dQ̃1 = 0, s5.3d

i
] Q̃2

] t
+

1

2M2

]2Q̃2

] x2 − sb̃0uQ̃1u2 + b̃2uQ̃2u2dQ̃2 = 0, s5.4d

where we have introduced the following notation:

1

Mj
=

d2E jskd
dk2 ,

b̃1,2= b1,2E
0

a

uf1,2sxdu4dx,

b̃0 = b0E
0

a

uf1sxdu2uf2sxdu2dx.

In Fig. 3 we depict the first two bands and the corresponding
reciprocal effective masses of the underlying linear system in
Eq. (5.2). To study modulational instability, we look for a
solution of Eqs.(5.3) and (5.4) in the form of a weakly
modulated constant background

Q̃j = sg̃ j + ã je
iKx−iVt + b̃ je

−iKx+iVtde−in j t,

where n1=−b̃1g̃1
2− b̃0g̃2

2,n2=−b̃2g̃2
2− b̃0g̃1

2, and uã ju , ub̃ ju
! ug̃ ju2. Next, we linearize the system with respect toã j ,b̃ j
and derive the dispersion relation of the resulting linear sys-
tem in the form

L2 − sG1
2 + G2

2 − 2x̃1G1 − 2x̃2G2dL + G1G2fsG1 + 2x̃1d

3sG2 + 2x̃2d − 4x̃0
2g = 0, s5.5d

where L=V2,Gj =K2/ s2Mjd ,x̃ j =−g̃ j
2b̃j for j =1, 2, andx̃0

=−g̃1g̃2b̃0. The corresponding solution of the coupled non-
linear system(consisting of two nonlinear Bloch waves) is
stable if both roots of Eq.(5.5) are positive and unstable
otherwise(notice that this analysis gives stability with re-
spect to long wavelengths only).

As a particular example we shall consider the case in
which both components belong to the same gap edge, i.e.,
whenM1M2.0 and thereforeG1G2.0. For the stability of
the wave, then, the following conditions must be satisfied:

G1
2 + G2

2 − 2x̃1G1 − 2x̃2G2 . 0, s5.6d

FIG. 1. Initial profile of a stable cn-cn solution plotted against
the potential profile(thick curve). The dashed and solid thin curves
denote the modulus squared ofq1 andq2, respectively. The param-
eters are fixed ask2=0.8,V0=1,a=1,b0=−0.5,b1=−1.0,b2=−0.6.
The initial amplitudes areg1=0.414 039,g2=0.925 82.

FIG. 2. Prospective view of the time evolution of the two-
component cn-cn solution reported in Fig. 1. To check stability the
solution was slightly modulated in space with a profile of the form
0.1 coss0.2xd. The top compares the profiles of the modulated
(dashed line) and exact(continuous line) two component solution at
time t=100. Parameters are fixed as in Fig. 1.
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G1G2 + 2sx̃1G2 + x̃2G1d . 4x̃0
2 − 4x̃1x̃2. s5.7d

Since the cases that we are studying numerically and are of
physical interest correspond to negativebj andb1b2.b0

2, we
have thatx̃ j .0 andx̃1x̃2.x̃0

2. This implies that either(5.6)
or (5.7) is satisfied for allK if either M1,2,0 or M1,2.0. In
the caseM1,2,0 the condition(5.7) can be viewed as a
constraint on the wave amplitude. Indeed, after some alge-
bra, one gets that(5.7) holds for anyK if the following
equation is satisfied:

sM1x̃1 + M2x̃2d2 , 4M1M2sx̃1x̃2 − x̃0
2d. s5.8d

In the second case, i.e., whenM1,2.0, each of the states is
unstable with respect to large wavelength excitations.

Now we can give a qualitative physical interpretation of
the result depicted in Figs. 1 and 2. As follows from the
explicit form of the solution, both components are described
by the states belonging to the same edge of the Brillouin
zone. This also can be viewed by the fact thatn1=n2<0.6
and thus the frequency of the solution isv+n1,2<1. Then,
from Fig. 3(a) one concludes that both waves correspond to
the states at the edge of the Brillouin zone and border the gap

from the side of negative effective masses(this also follows
from the fact that the period of the waves is twice the period
of the potential and thus BEC’s in the neighbor potential
wells have opposite phases). Thus Eq.(5.6) is satisfied.

Next, we consider Eq.(5.8) whose left- and right-hand
sides in the present case can be estimated as[uM1u= uM2u
<0.238; see Fig. 3(b)] 0.0266 and 0.352, respectively. Thus
the stability of the solution observed in numerical simula-
tions is confirmed by our stability analysis.

Let us now consider the case in which two atomic com-
ponents belong to different edges of the gap, so thatM1.0
and M2,0 (and henceG1.0 andG2,0) and restrict the
consideration to the case of positivebj. Then for the stability
of the wave, the following conditions must be satisfied:

2x̃1G1 , G1
2 + G2

2 + 2x̃2uG2u, s5.9d

2x̃2G1 , G1uG2u + 2x̃1uG2u. s5.10d

In this case the first component, having positive effective
mass, has a self-attractive character, which might dominate
the destructive action of the lattice when the matter localizes
around the potential maxima. In the absence of the second
component, this wave would be modulationally unstable, this
being a well known fact which can be seen also from Eq.
(5.9) (takex̃0 andG2 to be equal to zero). On the other hand,
the second component, with negative effective mass, has a
self-repulsive character, which is compensated by the poten-
tial barriers provided its localization occurs around the
minima of the lattice potential. This component is stable
even in the absence of the first harmonic and if its amplitude
is large enough(or the amplitude of the first component is
small enough) it can help to stabilize the first component, as
follows from Eq. (5.9). More specifically Eq.(5.9) is satis-
fied for anyK if

g̃1
2 ,

b̃2M1

b̃1uM2u
g̃2

2. s5.11d

The above analysis is in good qualitative agreement with
the results of numerical experiments. In particular, we find
that except for the cn-cn solution all other solutions display
modulational instability which leads to the formation of lo-
calized states. This is clearly seen in Fig. 4 where the time
evolution of the unstable sn-sn solution is reported(notice
the formation of two localized excitations at timet=40). As
for the previous case, the instability of this solution can be
easily understood from the fact that the initial distribution of
the matter corresponds to atoms condensed at the maxima of
the potential(i.e., positions of unstable equilibrium). Notice
that instability develops very quickly[already at timet=15,
which is due to the large positive inverse effective mass; see
Fig. 3(b)], out of which two-component bright soliton states
emerge, as clearly seen at timet=40. The bright soliton con-
sists of two coupled solitons(one for each component), one
bigger than the other. In Figs. 5(a) and 5(b), the time evolu-
tion of the unstable sn-cn solutions with different amplitude
ratio of the sn and cn components is shown. In both cases the
two components are excited at the gap edges corresponding
to effective masses having different signs and thus they cor-

FIG. 3. (a) Lowest two bands of the linear Schrödinger problem
in Eq. (5.2) in the reduced zone scheme.(b) Reciprocal effective
masses of the first(continuous curve) and second(dashed curve)
bands of(a). The parameter values of the potential are fixed as in
Fig. 1. For these parameters the period of the potential is 4.5144
and the edges of the Brillouin zone are ±0.696.
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respond to the second case considered above, where Eq.
(5.11) is the condition for the wave stability. In Fig. 5(a) the
stable cn component is larger than the unstable sn one, while
in Fig. 5(b) we have the opposite. We see that, although in
both cases instability develops, the solution with larger stable
component is more stable and less effective in creating lo-
calized states than the other. This “induced” stabilization is
in qualitative agreement with the prediction of the above
analysis(a detailed quantitative study of the instability of all
possible mixing of stable and unstable components requires
more investigations and it will be reported elsewhere).

It is interesting to investigate also solutions involving dn
components since these, in contrast with sn and cn compo-
nents, have nonzero spatial average, i.e., they are periodic
waves on top of a constant background. In Fig. 6 we depict
the time evolution of a dn-dn solution from which we see
that it is modulationally unstable, leading to the formation of
bright solitons of the same type observed for the sn-sn case.
Similar time evolutions are also reported in Figs. 7 and 8 for
the cases sn-dn and cn-dn. Also in this case we observe that
the mixing with the unstable sn component is more effective
than the one with the stable cn component in creating local-
ized excitations of soliton type(the three bright solitons
formed in Fig. 7 at timet<10 remain equally spaced and
well localized also for longer times). By increasing the cn
component of the cn-dn solution of Fig. 8, we also find that
the time evolution becomes more stable, as discussed for the
sn-cn case. A more detailed numerical analysis is, however,
required to characterize the dependence of the modulational
instability on the many system parameters.

Before closing this section it is worth discussing the
physical implications of the above results. First we remark
that in the absence of an optical lattice(periodic potential) a
homogeneous condensate with attractive(repulsive) interac-
tions, negative(positive) bj in our case, is unstable(stable)
with respect to long wavelength perturbations. In this section

we have shown that, similarly to the one-component case
(see[3]), the presence of a periodic potential dramatically
changes the situation, allowing existence of modulationally
stable and unstable Bloch waves independently of the type of
the interaction. Also, in complete analogy with the one-
component case, instabilities of Bloch waves can be used for
the sake of generation of solitary pulses(more precisely,
coupled spatially localized states of both components). In
this regard we remark that localized excitations obtained
from trivial phase solutions are not stationary in time but
have complicated dynamics, as is natural for waves produced
from modulational instability. A simple way to stabilize them
in time, however, is to increase the strength of the periodic
potential when localized excitations are formed. This has the
effect of enhancing the confinement, by reducing the atomic
tunneling between potential wells, with the result of dynami-
cal stabilization(stationary states are produced after some
transient). In Fig. 9 we show an example of this stabilization
for the case of the sn-sn solution in Fig. 4. In particular,
panel(a) of Fig. 9 shows the early stages of the time evolu-
tion while panel(b) shows the dynamics of the stable multi-

FIG. 4. Prospective view of the time evolution of the unstable
sn-sn solution(notice that both components of the solution are de-
picted at each time). The initial amplitudes are taken asg1

=0.414 039,g2=0.925 820. Parameters are fixed as in Fig. 1, except
for k2=0.2. The modulational initial profile is taken as in Fig. 2.
Notice the emergence of coupled soliton components out of the
instability.

FIG. 5. (a) Same as in Fig. 4 but for the unstable sn-cn solution.
The initial amplitudes are taken asg1=0.411 113 andg2=1.0877.
Parameters are fixed as in Fig. 1 except forb0=−0.65. Notice that
the cn component is larger and more stable.(b). Same as in Fig. 4
but for the unstable cn-sn solution. The initial amplitudes are taken
asg1=0.237 356, andg2=0.627 986. Parameters are fixed as in Fig.
1 except fork2=0.4 andb0=−0.65. Notice that the unstable sn
component dominates and soliton generation is more effective.
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component soliton which is formed at later stages. For this
case, the strength of the potential was increased at timet
=15 by a factor of 6 with respect to its initial value. Outflow
boundary conditions were used to eliminate the excess mat-
ter and to isolate the single two-component soliton. Notice
that by increasing the potential strength just after the modu-
lational instability has developed, two(two-component) soli-
tons have been trapped in the middle of the line[see Fig.
9(a)]. This solution, however, is unstable and after a long
transient it evolves into a stable single multicomponent soli-
ton oscillating in the potential well[see Fig. 9(b)], remaining
stable for the rest of the time(notice that the two components
move in phase). Two-hump–single-hump transitions were
also observed in the single component NLS equation with
periodic potential[21,22] where the analogy with intrinsic
localized modes of discrete lattices was emphasized. The
above stabilization technique was also shown to be effective
for multidimensional solitons[19].

VI. DISCUSSION

In this section we briefly discuss the Hamiltonian proper-
ties of the n-component NLS-type equation with external
potential, whose strength can be different for each compo-
nent [11]:

i
] c j

] t
= −

1

2m j

]2c j

] x2 + Vjsxdc j + o
p=1

n

ajpucpu2c j , s6.1d

Vjsxd = − V0jsn2sax,kd, j = 1,…,n. s6.2d

Such NLS-type equations with symmetric interacting matri-
ces ajp=apj are natural generalizations of Eqs.(3.2) and
(3.3). The Hamiltonian of Eq.(6.1) is

H =E dxFo
j=1

n
1

2m j
U ] c j

] x
U2

+
1

2 o
j ,p=1

n

ajpuc ju2ucpu2

+ o
j=1

n

Vjsxduc ju2G , s6.3d

where the integration goes over one period 0øxøL.
It is pointed out in Ref.[11] that nontrivial as well as

trivial phase solutions exist for generic choices of the param-
eters only provided the interaction matrixa is invertible. The
n=2 cases with degeneratea may exist for special choices of
the parameters; see Secs. III and IV.

Here we remark that for someAnsätzethe n-component
NLS equation reduces to an effective one-component NLS-
type equation. Indeed, let us choose

c jsxd = njsx,tdcsx,td, njsx,td = e−iv j t+iQ jsxdÎNj , s6.4d

whereNj .0 andQ jsxd appears only in the nontrivial phase
case and is determined by

dQ j

dx
=

C j

Njucsxdu2
. s6.5d

FIG. 6. Same as in Fig. 4 but for the unstable dn-dn solution.
Initial amplitudes areg1=−0.462 91 andg2=1.035 099. Other pa-
rameters are fixed as in Fig. 1.

FIG. 7. Same as in Fig. 4 but for the sn-dn solution. Initial
amplitudes areg1=0.738 55 andg2=1.430 19. Other parameters are
fixed as in Fig. 1 except forb0=−0.7.

FIG. 8. Same as in Fig. 4 but for the cn-dn solution. Initial
amplitudes areg1=0.414 04 andg2=1.035 10. Other parameters are
fixed as in Fig. 1.
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Inserting Eq.(6.4) into the Hamiltonian we easily get the
following reduced HamiltonianH=H0+Hred, where:

Hred=E dxFM0

2
U ] c

] x
U2

+
M−1

2ucu2
+ Vsxducu2 +

W0

2
ucu4G ,

M0 = o
j=1

n
Nj

m j
, M−1 = o

j=1

n
Cj

2

Njm j
,

Vsxd = v0sn2sax,kd, W0 = o
j ,p=1

n

ajpNjNp,

v0 = o
j=1

n

V0jNj, H0 = o
j=1

n UCj

m j
argcsx,tdU

x=0

L

, s6.6d

which describes the dynamics of the effective fieldcsx,td.
The result for the trivial phase solution case is obtained with

Cj =0 and leads toHred with M−1=0. This means that the
systems ofn equations with theAnsatz(6.4) reduce to just
one equation forcsx,kd; the remainingn−1 equations follow
as a consequence of the first one and the set of constraints on
the coefficientsajl ,Nj ,m j ,v j. The same argument holds true
also for three of our solutions, cases 4, 5, and 6. In particular
the solutions cn-cn,sn-sn, and dn-dn are effectively one-
component ones. The class of solutions that describe the
multicomponent effects should be analyzed by usingAnsätze
more general than(6.4). The stability properties of these so-
lutions do not seem to be trivial consequences of the theo-
rems proved in[11] and deserve additional studies. It is also
worth remarking that our numerical results are complemen-
tary to the ones in Ref.[11] due to the facts that(i) our
interaction matricesa are chosen to be negative definite,
while in [11] a is positive definite;(ii ) our external potential
has sign opposite to the one in[11]. These two differences
account for the different stability properties of otherwise
seemingly equivalent solutions, e.g., cn-cn and dn-dn.

Before closing this section, we shall briefly discuss pos-
sible experimental realizations of the described phenomena.
To this regard, we remark that for condensates with repulsive
interactions one could achieve desired initial states by adia-
batic switching on the lattice potential, allowing atoms to
acquire a stable distribution, which subsequently can be
made unstable by means of abrupt change of the lattice pa-
rameters or by accelerating the lattice until the state ap-
proaches the edge of the Brillouin zone, where modulational
instability develops. In the case of attractive interactions, to
avoid the phenomenon of collapse present in the multidimen-
sional case, one should prepare the apparatus so as to con-
form to the criterion of validity of the 1D approximation. In
this case, the respective initial conditions could be created by
switching the sign of the interactions by means of a Fesh-
bach resonance[23]. Thus, one could start from a two-
component BEC with negligibly small scattering lengths
(i.e., a gas of almost noninteracting atoms), first loaded in an
optical lattice in a stable uniform atomic configuration and
subsequently exposed to an external magnetic field, allowing
effective control of the signs and magnitudes of the scatter-
ing lengths via the Feshbach resonance. In this situation the
two-component BEC should either remain stable or develop
instabilities of the type described above, depending on the
sign of the scattering lengths. We hope these results will be
of interest to experimentalists working on mixtures of Bose-
Einstein condensates.

VII. CONCLUSIONS

In conclusion, we have considered the two-component
CNLS equation with an elliptic potential as a model for
trapped, quasi-one-dimensional two-component BEC’s.
Classes of elliptic solutions have been analyzed in detail. In
particular we considered intrinsic two-component solutions,
i.e., ones with nonproportional amplitudes. The role played
by these solutions as initial states from which localized mat-

FIG. 9. Time evolution of a two-component soliton resulting
from the modulational instability of the sn-sn solution. Parameters
are the same as in Fig. 4.(a) Early stages of the stabilization pro-
cess.(b) The two-component soliton oscillating inside the potential
well at later stages of the time evolution. The soliton dynamics has
been stabilized by increasing the strength of the periodic potential
by a factor of 6 with respect to the initial value at the early stages
st=15d of the instability process. Outflow boundary conditions have
been used to eliminate the excess matter.
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ter waves(solitons) can be generated through the modula-
tional instability mechanism has been shown.

Further perspectives of finding stable periodic solutions to
the n-component case are outlined in[16]. For n=2 finite-
gap solutions of Manakov system given in terms of multidi-
mensionalu functions are derived in[24,25]; reduction of
finite-gap solutions to elliptic functions is presented in[13].
Interesting classes of periodic solutions can also be obtained
as the result of reduction of the Manakov system to a com-
pletely integrable two-particle system interacting with fourth
order potential[15,26].

Recently, we became aware of Ref.[27] which gives extra
evidence for the correctness of our results and their agree-
ment with the ones in[28].
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